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Abstract

A procedure, based on sample spacings, is proposed for testing whether a univariate distribution is symmetric about some
unknown value. The proposed test is a modification of a sign test suggested by Antille and Kersting [1977. Tests for symmetry. Z.
Wahrscheinlichkeitstheorie verw. Gebiete 39, 235–255], but unlike Antille and Kersting’s test, our modified test is asymptotically
distribution-free and is usable in practice. A simulation study indicates that the proposed test maintains the nominal level of
significance, � fairly accurately even for samples of size as small as 20, and a comparison with the classical test based on sample
coefficient of skewness, shows that our test has good power for detecting different asymmetric distributions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many statistical procedures assume that data come from a normal distribution. However, many such procedures are
robust to violations of normality, so that having data from a symmetric distribution is often sufficient for their validity.
Other procedures, such as nonparametric methods, assume symmetric distributions rather than normal distributions.
The presence or absence of symmetry is also important in terms of deciding what parameter to estimate. Bickel and
Lehmann (1975) and Antille et al. (1982), among others, argue that if F is symmetric, the point of symmetry � is the
only natural measure of location, whereas if F is nonsymmetric there is no longer only one reasonable measure of
location.

Thus, there are many reasons for investigating the presence or absence of symmetry, and the problem of testing
symmetry has been receiving much attention in the literature; see, e.g., Gupta (1967), Gastwirth (1971), Antille and
Kersting (1977), Feuerverger and Mureika (1977), Randles et al. (1980), Antille et al. (1982), Csörgő and Heathcote
(1987), Cabilio and Masaro (1996), and Mira (1999). The goal is to design tests that (a) have good power for interesting
alternatives to symmetry and (b) are either asymptotically distribution-free or at least have a type-I error probability
that stays relatively constant for distributions satisfying the null hypothesis of symmetry.
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In the current article we suggest a modification of a sign test based on sample spacings suggested by Antille and
Kersting (1977). The asymptotic variance of Antille and Kersting’s sign statistic depends on the underlying distribution
function, so that the test is valid for a given family of distributions and is not asymptotically distribution-free. Further,
the asymptotic variance is almost three times larger for the Cauchy distribution than for the normal, so the type-I error
probability does not stay relatively constant. In order to obtain a limiting distribution that does not depend on the
underlying distribution we suggest a consistent estimator of the asymptotic variance. Our modified test is defined in the
next section, where we provide results for the asymptotic distribution of the test statistic under the null hypothesis of
symmetry, as well as under a sequence of converging alternatives of the form F(t + n−1/2�(t)), where F is symmetric
about zero, � is some smooth function, and n is the sample size. The estimator of the asymptotic variance is shown
to be consistent in Section 3, and Section 4 contains a simulation study where our modified test is compared with the
classical test based on the skewness coefficient (Gupta, 1967). The proofs are given in the Appendix.

2. A test for symmetry about an unknown value

Assume that X1, . . . , Xn are independent random variables (rvs) with distribution function F and density function f.
Denote the order statistics by X(1), . . . , X(n) and the “first-order spacings” by

Di = X(i+1) − X(i), i = 1, . . . , n − 1.

In Antille and Kersting (1977) (hereafter referred to as AK in this article), a sign test statistic

S = n−1/2
[(n−1)/2]∑

i=1

(
I{Di−Dn−i �0} − 1

2

)

based on the spacings {Di}, is proposed for tests for symmetry of F about an unknown value �, where [x] denotes the
greatest integer smaller than or equal to x. Due to technical problems arising from the behavior of the derivatives of
� = F−1 near 0 and 1, AK derived asymptotic properties for the statistic

S� = n−1/2
[(n−1)/2]∑
i=1+[�n]

(
I{Di−Dn−i �0} − 1

2

)

rather than for S; the statistic S� can be regarded as a trimmed version of S.A problem is that although S� is asymptotically
normal, it does not provide an asymptotically distribution-free test for symmetry. This is because its asymptotic variance
depends on the underlying distribution (in a rather complicated way). This problem, however, can be circumvented by
finding a nonparametric and consistent estimator of the variance.

The asymptotic variance of S� is given by (see AK)

�2
� = 1

16
+ 1

16

∫ 1−�

�

(
1 − log

�′(t)
�′(1/2)

)2

dt + �

16

(
log

�′(�)
�′(1/2)

)2

− �

8
.

Further, the limit �2 = lim�→0 �2
� is equal to

1

16
+ 1

16

∫ 1

0

(
1 − log

�′(t)
�′(1/2)

)2

dt = 1

16
+ 1

16

∫ ∞

−∞

(
1 + log

f (t)

f (�)

)2

dF(t), (1)

provided that the integrals exist.
Motivated by the ideas of Vasicek (1976) and van Es (1992), we construct an estimator of �2 by replacing the

distribution function on the left-hand side of (1) by the empirical distribution function, and using a difference operator
in place of the differential operator. The derivative of the inverse of F, �′(t), is then estimated by nDi,m/(2m)

for i/n� t < (i + 1)/n, i = m, . . . , n − m, where Di,m = X(i+m) − X(i−m+1) are the spacings of order 2m − 1.
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If we assume that m/n → 0 as m, n → ∞, then this motivates the following estimator of �2:

�̂2 = 1

16
+ 1

16(n − 2m + 1)

n−m∑
i=m

(
1 − log

Di,m

Dk,m

)2

,

where k = [n/2]. Likewise, we estimate �2
� by

�̂2
� = 1

16
+ 1

16(n − 2(m + [�n]) + 1)

n−m−[�n]∑
i=m+[�n]

(
1 − log

Di,m

Dk,m

)2

+ �

16

(
log

D[�n],m
Dk,m

)2

− �

8
.

In order to obtain asymptotically distribution-free tests for symmetry, we suggest the test statistics

T = S/�̂ and T� = S�/�̂�.

From Theorem 3 in AK, together with our Theorem 3 stated in the next section (on the consistency of the above variance
estimators), we obtain the following basic result.

Theorem 1. Assume that X1, . . . , Xn are independent rvs from F, where F is symmetric. Further, assume that the
support of F is a (possibly infinite) interval and that f is strictly positive and twice continuously differentiable on this
interval. Then T� is asymptotically N(0, 1).

Thus, to test the null hypothesis of symmetry,

H0 : F(t − �) = 1 − F(−(t − �)) for all t ,

versus the general alternative of asymmetry, corresponding to

H1 : F(t − �) �= 1 − F(−(t − �)) for at least one t ,

at the approximate (n large) � level of significance, we reject H0 whenever |T�| > z�/2, where z� denotes the � quantile
of the standard normal distribution. We conjecture that this test procedure is asymptotically valid not only for T�, but
for T as well. This is confirmed by the simulations in Section 4, although we do not have a formal proof of the latter
assertion as yet.

The asymptotic distribution of T� under close alternatives is studied next. As in AK, we consider close alternatives of
the form Gn(t) = F(t + n−1/2�(t)) and assume, without loss of generality, that F is symmetric about 0. The function
t + n−1/2�(t) is assumed to be a monotonously increasing function of t for large n. By Theorem 5 in AK and Theorem
3 in the next section, we obtain the following theorem on the asymptotic distribution of T� under the close alternatives
considered.

Theorem 2. Assume that X1, . . . , Xn are independent rvs from Gn and that � is twice continuously differentiable with
bounded derivatives. Then, under the assumptions on F made in Theorem 1, T� is asymptotically N(���−1

� , 1), where

�� = 1

4

∫ 1/2

�
(�′(�(t)) − �′(−�(t))) dt .

The limit � = lim�→0 �� exists and is equal to

� = 1

4

∫ 0

−∞
(�′(t) − �′(−t)) dF(t).

Remark (asymptotic relative efficiency). The Pitman asymptotic relative efficiency (ARE) of a test relative to another,
is defined as the limit of the inverse ratio of sample sizes required to obtain the same limiting power, at a sequence of
alternatives converging to the null hypothesis. If the limiting power of a test at a sequence of alternatives converges to
a number in the open interval from the level, �, to the maximum power viz. 1, then a measure of rate of convergence,
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called “efficacy” can be computed. Under some standard regularity conditions (see e.g. Fraser, 1957), which include
the asymptotic normality of the test under the null and under the sequence of alternatives, this is given by

efficacy = �2

�2 ,

where � and �2 are the mean and variance under the alternative sequence, when the statistic has been normalized to
have a limiting standard normal distribution under the null.

Thus, from Theorems 1 and 2, one can see that the “efficacy” of the test statistic T� is (��/��)
2, which coincides with

that for the test statistic S�. In AK, values of lim�→0(|��|/��) are given for the normal, double exponential, logistic,
and Cauchy distributions. AK also computed values of (the square root of the) efficacy for some other tests, and
concluded that the test based on S� is a serious competitor among scale and translation invariant tests for symmetry.
These asymptotic conclusions still hold for our modified distribution-free test.

3. Consistency of variance estimators

Assume that X1, . . . , Xn are independent rvs with distribution function Gn(t) = F(t + n−1/2�(t)) (note: we do not
require F to be symmetric in this section). Again, due to technical problems arising from the behavior of the derivatives
of � = F−1 near 0 and 1, we will show consistency for

�̃2
� = 1

16
+ 1

16(n − 2(m + [�n]) + 1)

n−m−[�n]∑
i=m+[�n]

(
1 − log

Di,m

Dk,m

)2

rather than for �̂2, where � is a small positive number. In the next theorem we show that �̂2
� and �̃2

� are consistent
estimators of �2

� and

�2
� = 1

16
+ 1

16

∫ �(1−�)

�(�)

(
1 + log

f (t)

f (�)

)2

dF(t),

respectively. Note that �2
� can be made arbitrarily close to �2 by choosing � sufficiently small (provided that the integrals

(1) exist).

Theorem 3. Assume that m/n → 0 and m/ log n → ∞ as n → ∞. Then, under the assumptions of Theorem 2 (except
the assumption on symmetry of F), �̂2

� → �2
� and �̃2

� → �2
� a.s. as n → ∞.

The proof of Theorem 3 which is given in the Appendix, relies on the following general result, which is also proved
in the Appendix.

Theorem 4. Assume that h is a continuous function on (0, ∞). Then, under the assumptions of Theorem 3,

lim
n→∞

1

n − 2(m + [�n]) + 1

n−m−[�n]∑
i=m+[�n]

h

(
2m

nDi,m

)
=

∫ �(1−�)

�(�)

h(f (t)) dF(t) a.s.

4. Simulation study

In this section we consider T rather than T� since we believe that T is the appropriate test statistic. Three basic
questions will be addressed:

(1) How to choose the value of m which provides a good estimator of �̂2 = �̂2
(m)?

(2) How do the level (actual versus nominal) and power of the test T =S/�̂ behave for different underlying models F?
(3) How powerful is T for detecting asymmetry?
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Fig. 1. The level of the test as a function of m. Here n = 20 and � = 0.05.

A competitor to the test T is the classical test of skewness (Gupta, 1967), which is based on the sample coefficient
of skewness

b
1/2
1 = M3M

−3/2
2 ,

where Mk is the kth sample moment about the sample mean. This statistic tests the null hypothesis that the coefficient
of skewness �3�

−3/2
2 , with �k denoting the kth central moment of the underlying distribution, is equal to zero versus the

alternative that it is not equal to zero. Under the null hypothesis, and if �6 < ∞, (nb1/	2)1/2 has the limit distribution
N(0, 1), where 	2 =(�6 −6�2�4 +9�3

2)/�
3
2. An asymptotically distribution-free test is obtained by replacing the central

moments in 	2 by the corresponding sample central moments. See Gupta (1967) for details.
In the simulation study we focus on four different distributions F:

• Cauchy, f (t) = 
−1(1 + t2)−1;
• double exponential, f (t) = 2−1e−|t |;
• logistic, f (t) = e−t (1 + e−t )−2; and
• normal, f (t) = (2
)−1/2e−t2/2.

The alternative considered is Gn(t) = F(t + n−1/2�a(t)), where a is a nonnegative constant and �a(t) = at , t �0, and
0 elsewhere. Each entry in the tables and the figures is based on 10,000 replications.

In Figs. 1–4 we see how the actual level of the test T depends on the underlying distribution and the choice of m,
when the nominal level of test is � = 0.05. From the figures we conclude that m should be kept relatively small and
that m should increase slowly with the sample size n in order to get the actual level of the test close to the nominal
level. For n in the range 20–100, m = 3 appears to be a reasonable choice, while for n = 500, the value of m needs to
be a bit larger, e.g., equal to 4 or 5. In Table 1, estimates of the actual levels are given for the different distributions



804 M. Ekström, S. Rao Jammalamadaka / Journal of Statistical Planning and Inference 137 (2007) 799–810

0.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

5 10 15 20

Logistic Normal

Cauchy

0.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

5 10 15 20

Double exponential

m

le
ve

l o
f t

he
 te

st

Fig. 2. The level of the test as a function of m. Here n = 50 and � = 0.05.
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Fig. 3. The level of the test as a function of m. Here n = 100 and � = 0.05.
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Fig. 4. The level of the test as a function of m. Here n = 500 and � = 0.05.

Table 1
Estimates of the actual level of the test T

n m Distribution

Cauchy Double exponential Logistic Normal

20 3 0.059 0.043 0.030 0.030
50 3 0.069 0.056 0.044 0.039

100 3 0.069 0.047 0.047 0.042
500 4 0.060 0.049 0.042 0.041
500 5 0.066 0.054 0.046 0.044

Table 2
Estimates of the actual level of the classical test of skewness

n Distribution

Double exponential Logistic Normal

20 0.047 0.028 0.026
50 0.046 0.035 0.035

100 0.043 0.041 0.042
500 0.042 0.042 0.046

and some different sample sizes, with corresponding suggested values of m. We see that the actual levels stay relatively
constant, although it is noticeable that the level is lower for n = 20 and higher for the Cauchy distribution than for the
other cases. Further, the actual levels of the test T in Table 1 are close to the corresponding levels of the classical test
of skewness (Table 2).
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Fig. 5. The power of the test T as a function of a. Here � = 0.05.
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Next, consider Figs. 5 and 6. In Fig. 5, which gives the power of the test T as a function of a (where a determines the
alternative), we see that the power against close alternatives is very close for the normal, the logistic and the double
exponential distribution. For the Cauchy distribution the power is somewhat lower than for the other three distributions.
For the classical test the power depends heavily on the underlying distribution. When F is normal the classical test has
more power than the test T (which is of no surprise since tests based on b

1/2
1 are often referred to as ‘tests of normality’).

If F is the logistic distribution then the results of the two tests are quite close, while if F is double exponential, then the
test T is the winner (except when n = 20).

Remark. Recall that the classical test is not valid for heavy-tailed distributions such as the Cauchy for which the
moments do not exist, whereas our test is. Secondly, it should be noted that there exist asymmetrical distributions for
which the third central moment �3 is zero (see e.g. MacGillivray, 1982), and that the classical test is unable to detect
such alternatives, whereas our test can.

In view of the simulations as well as the above Remark, one may conclude that the test T is a serious competitor to
the classical test, and is a valid test of symmetry in a wider range of situations including for those distributions with
heavy tails.

Appendix A

Lemma 1 (Glivenko (1933), Cantelli (1933)). If Hn is the empirical distribution function of a sample U1, . . . , Un of
uniform rvs on (0, 1), then

lim
n→∞ max

1� i �n
|i/n − U(i)|� lim

n→∞ sup
0� t �1

|Hn(t) − t | = 0 a.s. (A.1)

Remark. The inequality in (A.1) follows from the fact that Hn(U(i)) = i/n.

Lemma 2 (Yu and Ekström, 2000). Let U1, . . . , Un be uniform rvs on (0, 1) and assume that m/n → 0 and m/ log n →
∞ as n → ∞. Then with probability 1, for any fixed 0 < � < 1 and n sufficiently large,

max
1� i �n−m

(U(i+m) − U(i))�(1 + �)m/n.

Lemma 3 (Yu, 1986, 1994). Assume that X1, . . . , Xn are independent rvs with density function f. If m/n → 0 and
m/ log n → ∞ as n → ∞, then

fn(t) =
{2m/(nDi,m) if t ∈ [X(i), X(i+1)), i = m, . . . , n − m,

0 otherwise,

tends a.s. to f (t) for a.a. t ∈ R as n → ∞. If, in addition, f is positive and continuous on a compact set K, then

lim
n→∞ sup

t∈K

|fn(t) − f (t)| = 0 a.s.

Lemma 4. Lemma 3 remains valid if X1, . . . , Xn are independent rvs with distribution function Gn(t) =
F(t + n−1/2�(t)), where the density function f corresponding to F exists and where � is twice continuously differ-
entiable with bounded derivatives (F is not required to be symmetric).

Proof of Theorem 4. Let Ui = Gn(Xi), i = 1, . . . , n, and note that U1, . . . , Un are independent and uniformly
distributed on (0, 1). Denote the inverse of Gn by �n. By AK (p. 245),

�n(t) = �(t) − n−1/2�(�(t)) − n−1�n(�(t)), (A.2)
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where �n and � are, for n large enough, uniformly bounded on compact subsets of R. Let � be a small positive number,
0 < � < �/2, and define m� = m + [�n]. By Lemma 1,

P

(
max

1� i �n
|U(i) − i/n| > � i.o.

)
= 0.

Thus, there exists (a random) N such that for all n�N ,

m�

n
− ��U(m�) �U(n−m�) �

n − m�

n
+ �

holds with probability 1, which together with (A.2) imply that

−∞ < �(� − 2�)��n

(m�

n

)
�X(m�) �X(n−m�) ��n

(
n − m�

n
+ �

)
��(1 − � + 2�) < ∞

holds with probability 1 for n sufficiently large. Let K = [�(� − 2�), �(1 − � + 2�)]. Then, by Lemma 4,

lim
n→∞ max

m� � i �n−m�

|fn(X(i)) − f (X(i))|� lim
n→∞ sup

t∈K

|fn(t) − f (t)| = 0 a.s.

and moreover, since h is uniformly continuous on K,

lim
n→∞ max

m� � i �n−m�

|h(fn(X(i))) − h(f (X(i)))|� lim
n→∞ sup

t∈K

|h(fn(t)) − h(f (t))| = 0 a.s. (A.3)

Further, by Lemma 1 and (A.2),

lim
n→∞ max

m� � i �n−m�

|h(f (X(i))) − h(f (�(i/n)))|

� lim
n→∞ max

m� � i �n−m�

|h(f (�n(U(i)))) − h(f (�n(i/n)))|

+ lim
n→∞ max

m� � i �n−m�

|h(f (�(i/n))) − h(f (�n(i/n)))| = 0, a.s. (A.4)

and by (A.3) and (A.4) and the triangle inequality,

lim
n→∞ max

m� � i �n−m�

|h(fn(X(i))) − h(f (�(i/n)))| = 0 a.s.

Thus,

1

n − 2m� + 1

n−m�∑
i=m�

h(fn(X(i))) = 1

n − 2m� + 1

n−m�∑
i=m�

h(f (�(i/n)))

+ 1

n − 2m� + 1

n−m�∑
i=m�

(h(fn(X(i)))) − h(f (�(i/n)))

→
∫ 1−�

�
h(f (�(s))) ds =

∫ �(1−�)

�(�)

h(f (t)) dF(t) a.s.

as n → ∞, as was to be proved. �

Proof of Theorem 3. Let Ui = Gn(Xi), i = 1, . . . , n, and note that U1, . . . , Un are independent and uniformly
distributed on (0, 1). Denote the inverse of Gn by �n. By AK (p. 245),

�n(t) = �(t) − n−1/2�(�(t)) − n−1�n(�(t)),
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where �n is, for n large enough, uniformly bounded on compact subsets of R. Thus, by Lemmata 1 and 4,

2m/(nDk,m) = fn(X(k)) = [fn(X(k)) − f (X(k))] + [f (�n(U(k))) − f (�n(k/n))] + f (�n(k/n))

→ f (�(1/2)) = f (�) a.s.

as n → ∞. This result together with Theorem 4 imply the desired result. �

Proof of Lemma 4. Let Yi = �(Gn(Xi)) and Ui = F(Yi), i = 1, . . . , n, and note that Y1, . . . , Yn are independent rvs
from F and that U1, . . . , Un are independent uniform rvs on (0, 1).

Define y = y(x) (depending on n) by

y = x + n−1/2�(x) = x + n−1/2�(y) + n−1�n(y),

where �n(y)=n1/2(�(x)− �(y)). As is shown in AK, �′
n is, for n large enough, uniformly bounded on compact subsets

of R. Further, by the definition of Yi ,

Xi = Yi − n−1/2�(Yi) − n−1�n(Yi).

Thus,

Di,m = X(i+m) − X(i−m+1) = Y(i+m) − Y(i−m+1)

− n−1/2(�(Y(i+m)) − �(Y(i−m+1))) − n−1(�n(Y(i+m)) − �n(Y(i−m+1))),

and

2m

nDi,m

= 2m

nD̃i,m

/ [
1 − 1

n1/2 �∗
i − 1

n
�∗

n,i

]
, (A.5)

where D̃i,m = Y(i+m) − Y(i−m+1),

�∗
i = �(Y(i+m)) − �(Y(i−m+1))

Y(i+m) − Y(i−m+1)

and �∗
n,i = �n(Y(i+m)) − �n(Y(i−m+1))

Y(i+m) − Y(i−m+1)

.

By assumption, �′ is uniformly bounded on compact subsets of R. Thus, Lemma 2 and the mean value theorem imply
that with probability 1, for some constant c > 0 and n sufficiently large,

D̃i,m = �(U(i+m)) − �(U(i−m+1)) = �′(Ũi)(U(i+m) − U(i−m+1))�cm/n,

where U(i−m+1) �Ũi �U(i+m). Therefore, since both �′ and �′
n are uniformly bounded on compact subsets of R, we

see that with probability 1, both �∗
i and �∗

n,i are uniformly bounded for n sufficiently large. This together with equality
(A.5) and Lemma 3 complete the proof. �
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